Supporting Information

A Novel Route to Dipeptides via Non-condensation of Amino Acids: 2-aminoperfluoropropane as a Synthon for Trifluoroalane Dipeptides

Yong Guo, Fujiwara Kana and Kenji Uneyama*

Department of Applied Chemistry, Faculty of Engineering, Okayama University,

Okayama, 700-8653 JAPAN

Experiment Section

¹H NMR spectra were recorded at 300, 500 or 600 MHz, ¹⁹F NMR spectra were recorded at 282 MHz using CDCl₃. The chemical shifts are reported in δ (ppm) related to the CHCl₃ (7.26 ppm) and C₆F₆ (0 ppm). Coupling constants (J) are reported in hertz (Hz). All air and/or moisture sensitive reactions were carried out under argon atmosphere with dry, freshly distilled solvents. Dried THF was distilled from sodium and benzophenone. DMF was dried over calcium hydride. Diastereomeric excess values were measured on Chiralel OD-H column by HPLC or were determined by ¹⁹F NMR if two diastereomers were of obviously different chemical shifts.

Synthesis of *N*-(*p*-methoxyphenyl) bis(trifluoromethyl)imine (9)

_ . . _

In a 3000 mL flask, a solution of *p*-anisidine (123 g, 1.0 mol) in 1500 mL dichloromethylene was cooled at about -40 °C, and then was bubbled into hexafluoroacetone gas which was generated by slowly dropping hexafluoroacetone trihydrate (265 g, 1.2 mol) to concentrated sulfuric acid (133 mL) at 90 °C over a period of 8 hours. A moisture-sensitive pale violet precipitate which was adduct of hexafluoroacetone with *p*-anisidine was gradually formed. Then, triethylamine (415 mL, 3.0 mmol) was added to the solution and the precipitate was dissolved. After that the flask was equipped with a condenser and phosphorous oxychloride (153 g, 1 mmol) was added dropwise at such a rate that gentle reflux was maintained. The solution turned to yellow and some precipitate formed. After removal of the solvent and the tertiary amine,

the residue was subjected to distillation under reduced pressure to give the crude product.

Distillation again afforded a yellow liquid **1** (158 g, 0.58 mmol, 58%). Bp: 78-81 ^oC / 28 torr or 105-110 ^oC / 50 torr; IR (neat) 1600, 1506, 1250, 1164 cm⁻¹; ¹H NMR (CDCl₃) δ 3.84 (s, 3H), 6.94 (d, J = 9, 2H), 7.00 (d, J = 9, 2H); ¹⁹F NMR (CDCl₃) δ 91.8 (s), 98.8 (s). Anal. Calcd for C₁₀H₇F₆NO: C, 44.29; H, 2.60; N, 5.17. Found: C, 44.08; H, 2.60; N, 5.45.

N-trimethylsilyl-*N*-*p*-methoxyphenyl-1-trifluoromethyl-2,2-difluoroethenamine (7)

Under argon atmosphere, in a 1000 mL flask, were added Mg (4.86 g, 200 mmol), **9** (27.1 g, 100 mmol) and 400 mL anhydrous THF. The suspension was cooled at 0 °C and stirred. Chlorotrimethylsilane (50 mL, 400 mmol) was dropped into the suspension. The starting material **9** was completely consumed within 30 minutes determined by TLC monitoring. After decantation of Mg followed by evaporation of the solvent and chlorotrimethylsilane, subsequent addition of hexane to the residue to precipitate inorganic salt and filtration, the filtrate was evaporated and distillated under reduced pressure to afford product **7** (30.9 g, 95 mmol, 95%). Bp: 75 °C/1 torr; IR (neat) 2964, 1734, 1512, 1238 cm⁻¹; ¹H NMR δ 0.22 (s, 9H), 3.78 (s, 3H), 6.80 (d, J = 9, 2H), 6.98 (d, J = 9, 2H); ¹⁹F NMR δ 76.3 (m, 1F), 78.3 (m, 1F), 97.4 (dd, J = 23.4, 11.6, 3F). Anal. Calcd for C₁₃H₁₆F₅NOSi: C, 47.99; H, 4.96; N, 4.31. Found: C, 47.60; H, 4.71; N, 4.56.

N-p-methoxyphenyl-3,3,3-trifluoroalanylglycine benzyl ester (11a)

Under argon atmosphere in a 30 mL flask, were added 7 (325 mg, 1 mmol), DMF (1.4 mL), 10a (505 mg, 1.5 mmol) and triethylamine (506 mg, 5 mmol) subsequently. The mixture was stirred at room temperature for 1.5 h. Then, into the mixture cooled at to 0 °C, was added 1.5 mL water and then hydrochloric acid was dropped into until the pH of the solution was 3. After stirring for 1 h, the mixture was poured into 10 mL water and extracted with ether (10 mL \times 3). The combined organic phase was washed with saturated sodium hydrogen carbonate aqueous solution (10 mL) and saturated brine (5 mL \times 3), and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel (Hexane/EtOAc = 3/1) to afford a solid **11a** (362 mg, 0.91 mmol, 91%) which could be recrystallized from hexane and ethyl ether. Mp 97-99 °C;_IR (KBr) 3336, 1740, 1658, 1512, 1240 cm⁻¹;_1H NMR $(CDCl_3) \delta 3.75$ (s, 3H), 4.10-4.18 (m, 2H), 4.28-4.32 (m, 1H), 4.36 (d, J = 6.0, 1H), 5.18 (s, 2H), 6.67-6.70 (m, 2H), 6.78-6.81 (m, 2H), 7.02 (br, 1H), 7.32-7.36 (m, 5H); ¹⁹F NMR (CDCl₃) δ 89.0 (d, J = 7.1). Anal. Calcd for C₁₉H₁₉F₃N₂O₄: C, 57.57; H, 4.83; N, 7.07. Found: C, 57.32; H, 4.68; N, 6.95.

N-p-methoxyphenyl-3,3,3-trifluoroalanylalanine methyl ester (11b)

Under argon atmosphere in a 30 mL flask, were added 7 (325mg, 1mmol), DMF (1.4 mL), **10b** (208 mg, 1.5 mmol) and triethylamine (0.69 mL, 5 mmol) subsequently. The mixture was stirred at room temperature for 1.5 h. Then, into the mixture cooled at 0 ^oC, was added 1.4 mL water and then hydrochloric acid was dropped into until the pH of the solution was 3. After stirring for 1 h, the mixture was poured into 10 mL water and extracted with ethyl ether (10 mL \times 3). The combined organic phase was washed with saturated sodium hydrogen carbonate aqueous solution (10 mL) and saturated brine (5 $mL \times 3$), and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel (Hexane/EtOAc = 3/1) to afford a solid 11b (287 mg, 0.86 mmol, 86%). Mp 73-75 °C; IR (KBr) 3316, 1740, 1662, 1522, 1248 cm⁻¹; ¹H NMR (CDCl₃) δ 1.43 (t, J = 6.9, 3H), 3.74 (s, 3H), 3.76 (m, 3H), 4.23-4.29 (m, 1H), 4.38 (br, 1H), 4.60-4.66 (m, 1H), 6.67-6.72 (m, 2H), 6.79-6.82 (m, 2H), 6.94 (d, J = 6.0, 0.44H), 7.04 (d, J = 6.0, 0.56H); ¹⁹F NMR (CDCl₃) δ 89.0 (d, J = 6.8). Anal. Calcd for C₁₄H₁₇F₃N₂O₄: C, 50.30; H, 5.13; N, 8.38. Found: C, 50.30; H, 5.23; N, 8.14.

N-p-methoxyphenyl-3,3,3-trifluoroalanylphenylalanine ethyl ester (11c)

Under argon atmosphere in a 100 mL flask, were added 7 (1.63 g, 5 mmol), DMF (7.1 mL), 10c (1.72 g, 7.5 mmol) and triethylamine (3.5 mL, 25 mmol) subsequently. The mixture was stirred at room temperature for 1.5 h. Then, into the mixture cooled at 0 °C, was added 7.1 mL water and then hydrochloric acid was dropped into until the pH of the solution was 3. After stirring for 3 h, the mixture was poured into 100 mL water and extracted with ethyl ether (50 mL \times 3). The combined organic phase was washed with saturated sodium hydrogen carbonate aqueous solution (30 mL) and saturated brine (10 mL \times 3), and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel (Hexane/EtOAc = 3/1) to afford a solid 11c (1.96 g, 4.63 mmol, 93%). Mp 104-106 °C; IR (neat) (KBr) 3348, 1734, 1664, 1520, 1248 cm⁻¹; ¹H NMR (CDCl₃) δ 1.20-1.27 (m, 3H), 3.10-3.19 (m, 2H), 3.76 (s, 3H), 4.14-4.22 (m, 3H), 4.25-4.37 (m, 1H), 4.84-4.93 (m, 1H), 6.61-6.68 (m, 2H), 6.77-6.81 (m, 2H), 6.85-6.89 (m, 1H), 6.98-7.00 (m, 2H) 7.18-7.23 (m, 3H); ¹⁹F NMR (CDCl₃) δ 89.5 (d, J = 7.1, 0.62 × 3F), 89.6 (d, J = 7.1, 0.38 × 3F). Anal. Calcd for C₂₁H₂₃F₃N₂O₄: C, 59.43; H, 5.46; N, 6.60. Found: C, 59.42; H, 5.55; N, 6.56.

N-p-methoxyphenyl-3,3,3-trifluoroalanylleucine ethyl ester (11d)

Under argon atmosphere in a 30 mL flask, were added 7 (325mg, 1mmol), DMF (1.4 mL), **10b** (294 mg, 1.5 mmol) and triethylamine (0.69 mL, 5 mmol) subsequently. The mixture was stirred at room temperature for 1.5 h. Then, into the mixture cooled at 0 °C, was added 1.4 mL water and then hydrochloric acid was dropped into until the pH of the solution was 1. After stirring for 1 h, the mixture was poured into 10 mL water and extracted with ethyl ether (10 mL \times 3). The combined organic phase was washed with saturated sodium hydrogen carbonate aqueous solution (10 mL) and saturated brine (5 mL \times 3), and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel (Hexane/EtOAc = 3/1) to afford a liquid **11d** (331 mg, 0.85 mmol, 85%). IR 3348, 1740, 1668, 1516, 1238 cm⁻¹; ¹H NMR (CDCl₃) & 0.87-0.89 (m, 6H), 1.21-1.27 (m, 3H), 1.53-1.68 (m, 3H), 3.75 (s, 3H), 4.13-4.20 (m, 2H), 4.24-4.33 (m, 1H), 4.35-4.47(m, 1H), 4.62-4.68 (m, 1H), 6.66-6.71 (m, 2H), 6.78-6.81 (m, 2H), 6.95 (d, J = 8.4, 1H); ¹⁹F NMR (CDCl₃) _ 89.0 (d, J = 6.8Hz, $0.72 \times 3F$), 89.1 (d, J = 7.1, $0.28 \times 3F$) (slightly overlapped). Anal. Calcd for Calcd for C₁₈H₂₅F₃N₂O₄: C, 55.38; H, 6.45; N, 7.18. Found: C. 55.32; H, 6.42; N, 7.21.

N-p-methoxyphenyl-3,3,3-trifluoroalanylserine methyl ester (11e)

Under argon atmosphere in a 30 mL flask, were added 7 (325mg, 1mmol), DMF (1.4 mL), 10e (234 mg, 1.5 mmol) and triethylamine (0.69 mL, 5 mmol) subsequently. The mixture was stirred at room temperature for 1.5 h. Then, into the mixture cooled at 0 °C, was added 1.4 mL water and then hydrochloric acid was dropped into until the pH of the solution was 3. After stirring for 1 h, the mixture was poured into 10 mL water and extracted with ethyl ether (10 mL \times 3). The combined organic phase was washed with saturated sodium hydrogen carbonate aqueous solution (10 mL) and saturated brine (5 mL \times 3), and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel (Hexane/EtOAc = 2/1) to afford a solid 11e (280 mg, 0.80 mmol, 80%). Mp 89-95 °C; IR (KBr) 3548, 3300, 1736, 1664, 1518, 1238 cm⁻¹; ¹H NMR (CDCl₃) δ 3.75-3.79 (m, 6H), 3.89-3.94 (m, 1H), 4.00-4.08 (m, 1H), 4.30-4.43 (m, 2H), 4.68-4.72 (m, 1H), 6.70-6.73 (m, 2H), 6.80-6.83 (m, 2H), 7.28-7.34 (m, 1H); ¹⁹F NMR (CDCl₃) 89.0 (two groups of overlapped doublet, J =7.1). Anal. Calcd for C₁₄H₁₇F₃N₂O₅: C, 48.00; H, 4.89; N, 8.00. Found: C. 48.20; H, 4.86; N, 7.96.

N-p-methoxyphenyl-3,3,3-trifluoroalanyltyrosine methyl ester (11f)

Under argon atmosphere in a 30 mL flask, were added 7 (325mg, 1mmol), DMF (1.4 mL), 10f (346mg, 1.5 mmol) and triethylamine (0.69 mL, 5 mmol) subsequently. The mixture was stirred at room temperature for 1.5 h. Then, into the mixture cooled at 0 °C, was added 1.4 mL water and then hydrochloric acid was dropped into until the pH of the solution was 3. After stirring for 1 h, the mixture was poured into 10 mL water and extracted with ethyl ether (10 mL \times 3). The combined organic phase was washed with saturated sodium hydrogen carbonate aqueous solution (10 mL) and saturated brine (5 mL \times 3), and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel (Hexane/EtOAc = 2/1) to afford a solid 11f (290 mg, 0.68 mmol, 68%). Mp 166-168 °C; IR (KBr) 3324, 1736, 1676, 1520, 1238 cm⁻¹; ¹H NMR (CDCl₃) δ 3.01-3.11 (m, 2H), 3.70-3.72 (3H), 3.75 (s, 3H), 4.18-4.38 (m, 2H), 4.81-4.92 (m, 1H), 6.60-6.68 (m, 4H), 6.78-6.83 (m, 4H), 6.89 (br, 1H); ¹⁹F NMR (CDCl₃) 89.0 (d, J = 7.1, 0.59 × 3F), 89.1 (d, J = 7.1, 0.41 × 3F). Anal. Calcd for C₂₀H₂₁F₃N₂O₅: C, 56.34; H, 4.96; N, 6.57. Found: C. 55.93; H, 4.82; N, 6.50.

N-p-methoxyphenyl-3,3,3-trifluoroalanylmethionine methyl ester (11g)

Under argon atmosphere in a 30 mL flask, were added 7 (325mg, 1mmol), DMF (1.4 mL), **10g** (330 mg, 1.5 mmol) and triethylamine (0.69 mL, 5 mmol) subsequently. The mixture was stirred at room temperature for 1.5 h. Then, into the mixture cooled at 0 °C, was added 1.4 mL water and then hydrochloric acid was dropped into until the pH of the solution was 1. After stirring for 1 h, the mixture was poured into 10 mL water and extracted with ethyl ether (10 mL × 3). The combined organic phase was washed with saturated sodium hydrogen carbonate aqueous solution (10 mL) and saturated brine (5 mL × 3), and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel (Hexane/EtOAc = 3/1) to afford a solid **11g** (311 mg, 0.79 mmol, 79%). Mp 74-79 °C; IR (KBr) 3336, 1738, 1654, 1520, 1244 cm⁻¹; ¹H NMR (CDCl₃) δ 1.98-2.48 (m, 7H), 3.73-3.76 (m, 6H), 4.25-4.33 (m, 2H,), 4.73-4.79 (m, 1H), 6.68-6.72 (m, 2H), 6.79-6.82 (m, 2H), 7.10-7.25 (m, 1H); ¹⁹F NMR (CDCl₃) _ 89.0 (two groups of overlapped doublet, J=7.1). Anal. Calcd for C₁₆H₂₁F₃N₂O₄S: C, 48.72; H, 5.37; N, 7.10. Found: C. 48.38; H, 5.43; N, 6.90

N-p-methoxyphenyl-3,3,3-trifluoroalanyltryptophan methyl ester (11h)

Under argon atmosphere in a 30 mL flask, were added 7 (325mg, 1mmol), DMF (1.4 mL), 10h (382 mg, 1.5 mmol) and triethylamine (0.69 mL, 5 mmol) subsequently. The mixture was stirred at room temperature for 1.5 h. Then, into the mixture cooled at 0 °C, was added 1.4 mL water and then hydrochloric acid was dropped into until the pH of the solution was 3. After stirring for 1 h, the mixture was poured into 10 mL water and extracted with ethyl ether (10 mL \times 3). The combined organic phase was washed with saturated sodium hydrogen carbonate aqueous solution (10 mL) and saturated brine (5 $mL \times 3$), and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel (Hexane/EtOAc = 3/1) to afford a liquid **11h** (354 mg, 0.79 mmol, 79%). Mp 177-180 °C; IR (KBr) 3448, 1740, 1658, 1516, 1246 cm⁻¹; ¹H NMR (CDCl₃) δ 3.30-3.43 (m, 2H), 3.68-3.76 (m, 6H), 4.15-4.24 (m, 2H), 4.93-4.99 (m, 1H), 6.55-6.64 (m, 2H), 6.74-6.81 (m, 2H), 6.84-6.91 (m, 1H), 6.95-7.00 (m, 1H), 7.14-7.20 (m, 1H), 7.33-7.42 (m, 1H), 8.00 (br, 1H). ¹⁹F NMR (CDCl₃) of the recrystallized product δ 89.0 (d, J = 7.1, 0.65 × 3F), 89.2 (d, J = 7.1, 0.35 × 3F). Anal. Calcd for C₂₂H₂₂F₃N₃O₄: C, 58.79; H, 4.93; N, 9.35. Found: C. 58.09; H, 4.97; N, 9.15.

N-p-methoxyphenyl-3,3,3-trifluoroalanylproline methyl ester (11i)

Under argon atmosphere in a 30 mL flask, were added **7** (325mg, 1mmol), DMF (1.4 mL), **10i** (249 mg, 1.5 mmol) and triethylamine (0.69 mL, 5 mmol) subsequently. The mixture was stirred at room temperature for 1.5 h. Then, into the mixture cooled at 0 °C, was added 1.4 mL water and then hydrochloric acid was dropped into until the pH of the solution was 3. After stirring for 1 h, the mixture was poured into 10 mL water and extracted with ethyl ether (10 mL × 3). The combined organic phase was washed with saturated sodium hydrogen carbonate aqueous solution (10 mL) and saturated brine (5 mL × 3), and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel (Hexane/EtOAc = 2/1) to afford a liquid **11i** (248 mg, 0.69 mmol, 69%). IR (Film) 3340, 2960, 1746, 1664, 1516, 1244 cm⁻¹; ⁻¹H NMR (CDCl₃) 1.94-2.14 (m, 4H), 2.19-2.32 (m, 1H), 3.68-3.83 (m, 8H), 4.52-4.65 (m, 3H), 6.66-6.84 (m, 4H); ⁻¹⁹F NMR (CDCl₃) δ 88.7 (d, J = 4.5, 0.7 × 3), 88.8 (d, J = 4.8, 0.3× 3F), (partly overlapped). Anal. Calcd for C₂₁H₂₀F₃N₃O₄: Calcd for C₁₆H₁₉F₃N₂O₄: C, 53.33; H, 5.31; N, 7.77. Found: C, 53.22; H, 5.32; N, 7.65.

3-phenyl-2-[1,3,3,3-tetrafluoro-2-(4-methoxyphenylamino)propylideneamino]propionic acid ethyl ester (13c)

Under argon atmosphere in a 50 mL flask, were added 7 (1.74 g, 5.35 mmol), DMF (15 mL), **10c** (1.73 g, 7.5 mmol) and triethylamine (3.5 mL, 25 mmol) subsequently. The mixture was stirred at room temperature for 1.5 hours. Then, 150 mL water was added into the mixture and the mixture was extracted with ethyl ether (100 mL \times 3). The combined organic phase was washed with saturated brine (30 mL \times 3), and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel (Hexane/EtOAc = 5/1) to afford a yellow liquid **13c** (1.78 g, 4.2 mmol, 79%).

Competitive reaction of enamine 7 with benzyl amine and benzyl alcohol

Under argon atmosphere in a 30 ml flask, were added 7 (100 mg, 0.31 mmol), DMF (1 mL), benzyl amine (50 mg, 0.47 mmol) and benzyl alcohol (50 mg, 0.47 mmol) and triethylamine (0.21 mL, 1.6 mmol) subsequently. The mixture was stirred at room temperature for 2 h. Then, into the mixture cooled at 0 $^{\circ}$ C, was added 1 mL water and then perchloric acid was dropped into until the pH of the solution was 1. After stirring for 5 h, the mixture was poured into 10 ml water and extracted with ethyl ether (10 mL ×

3). The combined organic phase was washed with saturated sodium hydrogen carbonate aqueous solution (10 mL) and saturated brine (5 mL x 3), and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was subjected to column chromatography on silica gel (Hexane/EtOAc = 4/1) to afford a white solid **14** (102 mg, 0.30 mmol, 98%) without **15**. **14**: Mp 110-112 °C;_IR (neat) cm⁻¹ 3320, 1660, 1522; ¹H NMR (CDCl₃) δ 3.76 (s, 3H), 4.26 (q, J = 7.5 Hz, 1H), 4.39 (br, 1H), 4.50-4.58 (m, 2H), 6.66-6.78 (m, 3H), 6.78-6.82 (m, 2H), 7.18-7.21 (m, 2H), 7.26-7.35 (m, 3H);_¹⁹F NMR (CDCl₃) δ 89.0 (d, J = 7.1 Hz). Anal. Calcd for C₁₇H₁₇F₃N₂O₂: C, 60.35; H, 5.06; N, 8.28. Found: C, 60.65; H, 5.45; N, 8.58.

3,3.3-trifluoroalanylphenylalanine ethyl ester (16ca and 16cb)

To a solution of **11c** (1.58 g, 3.73 mmol) in 37 mL acetonitrile at 0 °C, was dropped an aqueous solution of CAN (6.13 g, 11.2 mmol) in 13 mL water. The reaction took place at 0 °C for 0.5 h and at room temperature for another 2.5 h. Then, the reaction solution was neutralized with NaHCO₃ aqueous solution, reduced by Na₂S₂O₃ (630 mg, 4 mmol) and stirred for 30 minutes. After filtration, the filtrate was extracted by ethyl acetate, washed with brine and dried over MgSO₄. After evaporation of the solvent, the residue was subjected column chromatography over silica gel (hexane/AcOEt = 2.5/1 to 2/1) to separate the either diastereomer of the product **16ca** (601 mg, 1.88 mmol, 50%) and **16cb** (354 mg, 1.11 mmol, 30%). **16ca**: Mp 89-91 °C; IR (KBr) cm⁻¹ 3344,

1736, 1666; ¹H NMR (CDCl₃) δ : 1.24-1.29 (t, J = 7.1Hz, 3H), 3.10-3.24 (m, 2H), 3.86 (q, J = 7.8 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 4.86 (dt, J = 7.8, 5.9 Hz, 1H), 7.08-7.11(m, 2H), 7.21-7.34 (m, 5H); ¹⁹F NMR (CDCl₃) δ 87.1 (d, J = 9.3 Hz). Anal. Calcd for C₁₄H₁₇F₃N₂O₃: C, 52.83; H, 5.38; N, 8.80. Found: C, 52.90; H, 5.51; N, 8.89. **16cb**: Mp 86-88 °C; IR (KBr) 3332, 1734, 1660 cm⁻¹; ¹H NMR (CDCl₃) δ 1.24-1.28 (m, 3H), 3.11-3.19 (m, 2H), 3.82 (q, J = 7.6 Hz, 1H), 4.17-4.21 (m, 2H), 4.85-4.89 (m, 1H), 7.10-7.12 (m, 3H), 7.23-7.30 (m, 3H); ¹⁹F NMR (CDCl₃) δ 87.0 (d, J = 7.1 Hz). Anal. Calcd for C₁₄H₁₇F₃N₂O₃: C, 52.83; H, 5.38; N, 8.80. Found: C, 52.91; H, 5.32; N, 9.05.

3,3.3-trifluoroalanylphenylalanine ethyl ester hydrochloric acid salt (17ca)

To a solution of **16ca** (200 mg, 0.63mmol) in ethyl acetate was added a solution of hydrochloric acid in methanol (1M, 1mL). After evaporation of all solvent and recrystallization in methanol and ethyl acetate, a white crystalline compound (200 mg, 0.56 mmol, 90%) was obtained. Mp 150-157 °C;_IR (KBr) cm⁻¹ 3268, 2996, 1706, 1578, 1504;_¹H NMR (d-DMSO) δ 1.09 (t, J = 7.1, 3H), 3.04 (d, J = 7, 2H), 4.04 (q, J = 7.2, 2H), 4.57 (q, J = 7.1, 1H), 4.90 (q, J = 7.5, 1H), 7.17-7.40 (m, 5H), 9.42 (d, J = 6.8, 1H);_¹⁹F NMR (d-DMSO, trifluoroacetic acid (86.0 ppm) as internal standard) δ 91.8 (d, J = 9.3). Calcd for C₁₄H₁₈ClF₃N₂O₃: C, 47.40; H, 5.11; N, 7.90. Found: C, 47.31; H, 5.29; N, 8.16.

HPLC analysis of the ratio of diastereomers of trifluoroalanine dipeptides 11:

The HPLC analysis of the ratio of diastereomers of trifluoroalanine dipeptides **11** was performed by Shimazu LC-10AT with a chiral column of OD-H (Daicel Chem. Co Ltd.). The elution solvent was a miture of hexane:i-PrOH=9:1 which was passed on the flow rate of 0.5 ml/min.

X-ray crystalografic analysis of 17ca

ORTEP drawing of X-ray structure of 17ca

CI F data of 17ca	
data_General	
_audit_creation_date	'Mon Jun 6 14:34:12 2005'
_audit_creation_method	'by teXsan'
_audit_update_record	?
#	
# PROCESSING SUMMARY (IUCr	Office Use Only)
_journal_date_recd_electronic	?
_journal_date_from_coeditor	?
_journal_date_accepted	?
	S16

_journal_coeditor_code ? #-----**# SUBMISSION DETAILS** _publ_contact_author_name 'ENTER NAME' _publ_contact_author_address ; ENTER ADDRESS ; 'ENTER EMAIL ADDRESS ' _publ_contact_author_email _publ_contact_author_fax 'ENTER FAX NUMBER ' _publ_contact_author_phone 'ENTER PHONE NUMBER ' _publ_contact_letter ENTER TEXT OF LETTER _publ_requested_journal 'ENTER JOURNAL NAME HERE' ' CHOOSE FI FM FO CI CM CO or AD' _publ_requested_category _publ_requested_coeditor_name ? #-----# TITLE AND AUTHOR LIST _publ_section_title ENTER SECTION TITLE ; _publ_section_title_footnote ENTER FOOTNOTE TO TITLE OF PAPER ; loop_ _publ_author_name _publ_author_footnote _publ_author_address S17 ' FIRST AUTHORS NAME ' FIRST AUTHORS FOOTNOTES

```
FIRST AUTHORS ADDRESS
_publ_section_synopsis
 ENTER SYNOPSIS
#-----
# TEXT
_publ_section_abstract
 ENTER ABSTRACT
_publ_section_comment
  ENTER TEXT
_publ_section_acknowledgements
 ENTER ACKNOWLEDGEMENTS
;
_publ_section_references
  ENTER OTHER REFERENCES
Molecular Structure Corporation, Rigaku Corporation. (2000). teXsan.
Single Crystal Structure Analysis Software. Version 1.11.
MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
                                 S18
Rigaku, 3-9-12 Akishima, Tokyo, Japan.;
_publ_section_figure_captions;
  ENTER FIGURE CAPTIONS;
_publ_section_exptl_prep;
 ENTER COMPOUND PREPARATION DETAILS;
_publ_section_exptl_refinement
```

```
;
```

÷

;

;

;

ENTER SPECIAL DETAILS OF THE REFINEMENT;

#-----

data_katagiri96 #-----**# CHEMICAL DATA** _chemical_formula_sum 'C14 H18 CI F3 N2 O3 ' _chemical_formula_moiety '?' _chemical_formula_weight 354.76 ? _chemical_melting_point _Chemical_absolute_configuration rm #-----# CRYSTAL DATA _symmetry_cell_setting orthorhombic 'P 21 21 21 ' _symmetry_space_group_name_H-M _symmetry_Int_Tables_number 19 loop_ _symmetry_equiv_pos_as_xyz x,y,z 1/2-x,-y,1/2+z1/2+x,1/2-y,-z -x,1/2+y,1/2-z _cell_length_a 5.1724(5)_cell_length_b 16.492(3)_cell_length_c 19.460(2) _cell_angle_alpha 90 S19 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_volume 1659.9(4)_cell_formula_units_Z 4 _cell_measurement_reflns_used 12256 _cell_measurement_theta_min 1.6 _cell_measurement_theta_max 27.5 _cell_measurement_temperature 120.2 #------_exptl_crystal_description 'needle' _exptl_crystal_colour 'colorless' _exptl_crystal_size_max 0.100 _exptl_crystal_size_mid 0.100 _exptl_crystal_size_min 0.100 _exptl_crystal_size_rad ?

1.419 _exptl_crystal_density_diffrn _exptl_crystal_density_meas ? 'not measured' _exptl_crystal_density_method _exptl_absorpt_coefficient_mu 0.275 _exptl_absorpt_correction_type integration _exptl_absorpt_process_details '(Higashi, 1999)' _exptl_absorpt_correction_T_min 0.974 _exptl_absorpt_correction_T_max 0.991 #-----**# EXPERIMENTAL DATA** _diffrn_radiation_type 'Mo K¥a' _diffrn_radiation_wavelength 0.7107 _diffrn_measurement_device_type 'Rigaku RAXIS-IV Imaging Plate' _diffrn_measurement_method ¥w _diffrn_detector_area_resol_mean 10.00 _diffrn_reflns_number 9790 _diffrn_reflns_av_R_equivalents 0.050 _diffrn_reflns_theta_max 27.48 _diffrn_measured_fraction_theta_max 0.9816 _diffrn_reflns_theta_full 27.48 S20 0.9816 _diffrn_measured_fraction_theta_full _diffrn_reflns_limit_h_min -6 _diffrn_reflns_limit_h_max 6 _diffrn_reflns_limit_k_min -21 _diffrn_reflns_limit_k_max 21 _diffrn_reflns_limit_l_min -24 _diffrn_reflns_limit_l_max 25 #------**# REFINEMENT DATA** _refine_special_details Refinement using reflections with $F^{2} > 0.0$ sigma(F^{2}). The weighted Rfactor (wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt). _reflns_number_total 2193 _reflns_number_gt 1606 _reflns_threshold_expression F^2^>2.0¥s(F^2^)

```
_refine_ls_structure_factor_coef
                                     F
_refine_ls_R_factor_qt
                                 0.0787
_refine_ls_wR_factor_ref
                                  0.1217
_refine_ls_hydrogen_treatment
                                     refall
_refine_ls_number_reflns
                                  2113
_refine_ls_number_parameters
                                     281
_refine_ls_goodness_of_fit_ref
                                     1.112
_refine_ls_weighting_scheme
                                     calc
_refine_ls_weighting_details
 w = 1/[\frac{1}{4}s^{2}(F_{0}) + 0.00608|F_{0}^{2}]'
_refine_ls_shift/su_max
                                 0.0766
_refine_diff_density_max
                                  0.53
_refine_diff_density_min
                                  -0.41
_refine_ls_extinction_method
                                    none
                                  ?
_refine_ls_extinction_coef
                                      S21
_refine_ls_abs_structure_details
                                     rm
_refine_ls_abs_structure_Flack
                                     0.2(2)
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
 'C' 'C' 0.003 0.002
;International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
 'H' 'H' 0.000 0.000
International Tables for Crystallography
(1992, Vol. C, Table 6.1.1.2)
 '0' '0' 0.011 0.006
International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
 'N' 'N' 0.006 0.003
International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
 'CI' 'CI' 0.148 0.159
```

```
International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
;
'F' 'F' 0.017 0.010
International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
#------
# ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS
loop_
                                   S22
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
Cl(1) Cl 0.4067(3) -0.11604(9) 0.47536(9) 0.0226(3) Uani 1.00 d . . .
F(4) F 0.6595(10) -0.3217(3) 0.6939(3) 0.044(1)
                                                     Uani 1.00 d . . .
F(5) F 0.2413(9) -0.3259(3) 0.6911(3) 0.039(1)
                                                     Uani 1.00 d . . .
F(6) F 0.439(1) -0.2280(3) 0.7437(2) 0.044(1) Uani 1.00 d...
0(3) 0 0.8700(8) -0.2007(3) 0.5834(3) 0.022(1)
                                                     Uani 1.00 d . . .
O(5) O 1.236(1) -0.0433(4) 0.7206(3) 0.037(1)
                                                     Uani 1.00 d . . .
O(6) \quad O \quad 0.8422(9) \quad -0.0166(4) \quad 0.7584(3) \quad 0.032(1)
                                                     Uani 1.00 d . . .
N(1) N 0.419(1) -0.2800(4) 0.5623(3) 0.021(1)
                                                     Uani 1.00 d . . .
N(2) N 0.671(1) -0.1028(4) 0.6458(3) 0.021(1)
                                                     Uani 1.00 d . . .
C(1) C 0.682(1) -0.1748(4) 0.6156(3) 0.017(1)
                                                     Uani 1.00 d . . .
C(2) C 0.878(1)
                  -0.0436(4) 0.6402(4) 0.023(1)
                                                     Uani 1.00 d . . .
C(4) C 1.008(1)
                  -0.0338(4) 0.7094(4) 0.021(1)
                                                     Uani 1.00 d . . .
C(5) C 0.446(1)
                  -0.2752(5) 0.6886(4) 0.030(1)
                                                    Uani 1.00 d . . .
C(6) C 0.771(1)
                   0.0367(4) 0.6113(4) 0.023(2)
                                                    Uani 1.00 d . . .
C(7) C 0.975(1)
                   0.0988(4) 0.5960(4) 0.023(1)
                                                    Uani 1.00 d . . .
                  -0.2276(4) 0.6231(4) 0.021(1)
C(8) C 0.445(1)
                                                    Uani 1.00 d . . .
C(9) C 0.927(2)
                  -0.0140(6) 0.8292(4) 0.034(2)
                                                     Uani 1.00 d . . .
C(10) C 0.697(2) -0.0244(5) 0.8746(4) 0.034(2) Uani 1.00 d ...
```

C	C(11) C 0.987(2)	0.1691(5) 0.636	7(5) 0.035(2)	Uani 1.00 d
C	C(12) C 1.141(2)	0.0895(5) 0.542	0(4) 0.031(2)	Uani 1.00 d
C	C(13) C 1.324(2)	0.1484(6) 0.526	3(6) 0.042(2)	Uani 1.00 d
C	C(14) C 1.334(2)	0.2185(6) 0.566	2(6) 0.045(2)	Uani 1.00 d
C	C(15) C 1.174(2)	0.2279(6) 0.621	9(6) 0.045(2)	Uani 1.00 d
		Sĩ	23	
F	H(1) H 0.88(1) 0).171(4) 0.684(3) 0.000(9) l	Jiso 1.00 calc
F	H(2) H 1.11(4) 0).08(1) 0.51(1)	0.155(2) Uis	so 1.00 calc
F	H(3) H 1.43(2) 0).142(5) 0.487(5) 0.032(7) l	Jiso 1.00 calc
F	H(4) H 1.49(3) 0	0.257(8) 0.564(6) 0.071(5) l	Jiso 1.00 calc
F	H(5) H 1.19(1) O	0.262(4) 0.643(3) -0.008(9) l	Jiso 1.00 calc
F	H(6) H 0.70(1) 0	0.023(4) 0.565(4) 0.004(9) l	Jiso 1.00 calc
F	H(7) H 0.65(1) 0	0.051(4) 0.642(4) 0.008(9) l	Jiso 1.00 calc
F	H(8) H 1.01(1) -	0.047(4) 0.835(4) 0.005(9) l	Jiso 1.00 calc
F	H(9) H 1.03(1) 0	0.038(4) 0.852(3) 0.002(9) l	Jiso 1.00 calc
F	H(10) H 0.57(1)	0.012(4) 0.864(3	3) -0.008(9)	Uiso 1.00 calc
F	H(11) H 0.61(1)	-0.078(5) 0.855(4	4) 0.011(9)	Uiso 1.00 calc
F	H(12) H 0.72(1)	-0.018(3) 0.916(3	3) -0.007(9)	Uiso 1.00 calc
H	H(13) H 0.99(1)	-0.062(4) 0.608(3	3) 0.002(9)	Uiso 1.00 calc
H	H(14) H 0.362(9)	-0.209(3) 0.6220	(2) -0.034(9)	Uiso 1.00 calc
H	H(15) H 0.56(1)	-0.097(3) 0.668(3	3) -0.011(9)	Uiso 1.00 calc
F	H(16) H 0.32(2)	-0.121(6) 0.534(5) 0.047(6)	Uiso 1.00 calc
F	H(17) H 0.52(1)	-0.304(3) 0.559(2	2) -0.028(8)	Uiso 1.00 calc
F	H(18) H 0.27(3)	-0.294(7) 0.558(7) 0.063(5)	Uiso 1.00 calc
lc	oop_			
_	_atom_site_aniso_lab	bel		
_	_atom_site_aniso_U_	_11		
_	_atom_site_aniso_U_	_22		
_	_atom_site_aniso_U_	_33		
_	_atom_site_aniso_U_	_12		
_	_atom_site_aniso_U_	_13		
_	_atom_site_aniso_U_	_23		
C	Cl(1) 0.0219(6) 0.0	0172(7) 0.0287(8	8) 0.0004(6)	-0.0008(6) 0.0002(7)
F	F(4) 0.040(2) 0.0	46(3) 0.045(3)	0.007(2) -0.	007(2) 0.016(3)
F	F(5) 0.038(2) 0.0	041(3) 0.037(3)	-0.024(2) 0.0	002(2) 0.009(2)
F	F(6) 0.067(4) 0.0	43(3) 0.021(2)	-0.020(3) 0.0	004(2) -0.006(2)
(0(3) 0.014(2) 0.0)20(2) 0.031(3)	-0.002(2) -0	.002(2) -0.006(2)
(0(5) 0.026(2) 0.0	0.031(3)	0.004(3) 0.0	001(2) -0.008(3)
(0(6) 0.023(2) 0.0	043(3) 0.030(2)	0.006(2) 0.0	001(2) -0.013(3)
Ν	N(1) 0.008(2) 0.0)23(3) 0.031(3)	0.001(2) 0.0	001(2) 0.001(2)

S	2	4
0	-	

N(2)	0.020(2)	0.023(3)	0.021(3)	-0.007(2)	0.006(2)	-0.006(2)
C(1)	0.015(2)	0.018(2)	0.018(3)	-0.002(2)	-0.002(2)	0.004(2)
C(2)	0.029(3)	0.012(2)	0.028(3)	-0.005(2)	0.003(3)	-0.005(2)
C(4)	0.025(2)	0.013(3)	0.027(3)	-0.002(2)	0.005(2)	0.008(3)
C(5)	0.031(3)	0.031(3)	0.028(3)	-0.012(2)	0.003(3)	-0.005(2)
C(6)	0.024(3)	0.018(3)	0.028(4)	0.001(2)	0.009(3)	0.000(3)
C(7)	0.024(3)	0.024(3)	0.021(3)	-0.007(2)	-0.008(2)	0.006(2)
C(8)	0.012(3)	0.016(3)	0.036(3)	0.004(2)	0.002(3)	-0.001(2)
C(9)	0.032(3)	0.041(4)	0.029(3)	0.003(4)	0.000(3)	-0.007(4)
C(10)	0.041(4)	0.040(4)	0.022(4)	0.005(4)	0.005(3)	-0.005(4)
C(11)	0.044(4)	0.024(3)	0.038(4)	0.001(3)	0.007(4)	-0.004(3)
C(12)	0.035(4)	0.033(4)	0.023(3)	0.004(3)	-0.001(3)	0.001(3)
C(13)	0.029(3)	0.042(4)	0.054(5)	0.010(3)	0.010(4)	0.020(3)
C(14)	0.035(4)	0.035(4)	0.065(5)	-0.009(4)	-0.005(4)	0.025(3)
C(15)	0.054(5)	0.026(4)	0.054(5)	-0.015(4)	-0.009(4)	0.001(4)
#						
_comp	outing_data	_collection	'PROC	ESS-AUTO		
_comp	outing_cell_	refinement	'PROC	ESS-AUTO		
_comp	outing_data	_reduction	'teXs	an Ver. 1.11	1	
_comp	outing_struc	cture_solutio	on Sire)/ 	1.01	
_comp	outing_struc	cture_refine	ment te	exsan ver. 1.	.10 [.]	
_comp	uting_publi	cation_mate	erial tex	san ver. 1.1	T	
_comp	outing_mole	ecular_graph	ICS ?			
#	special d	otaile				
_geom_special_details						
, loon						
deor	bond ato	m site labe	<u>ا</u> اد			
_geon	bond_ato	m site labe	2 I			
aeom	bond dist	tance				
aeom	bond site	e symmetry	1			
aeom	bond site	e symmetry	2			
aeom	bond pub	ol flag				
<u> </u>	C(5) 1	.350(10) .	. ves			
- ()	-(-)		S2	5		
F(5)	C(5) 1	.348(8)	ves			
F(6)	C(5) 1	.327(9)	yes			
0(3)	C(1) 1	.232(8)	yes			
0(5)	C(4) 1	.208(10) .	. yes			
- (-)	- ()		J			

0(6)	C(4)	1.314(9)	yes
0(6)	C(9)	1.45(1)	yes
N(1)	C(8)	1.47(1)	yes
N(2)	C(1)	1.326(9)	yes
N(2)	C(2)	1.454(9)	yes
C(1)	C(8)	1.513(9)	yes
C(2)	C(4)	1.51(1)	yes
C(2)	C(6)	1.54(1)	yes
C(5)	C(8)	1.50(1)	yes
C(6)	C(7)	1.498(9)	yes
C(7)	C(11)	1.41(1)	yes
C(7)	C(12)	1.37(1)	yes
C(9)	C(10)	1.49(1)	yes
C(11)	C(15)	1.40(1)	yes
C(12)	C(13)	1.39(1)	yes
C(13)	C(14)	1.39(2)	yes
C(14)	C(15)	1.37(2)	yes

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_2 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C(4) 0(6) 120.1(6) ... yes C(9) C(1) N(2) C(2) 122.4(6) ... yes 0(3) C(1) N(2) 124.7(6) ... yes 0(3) C(1) C(8) 119.4(6) ... yes S26 N(2) C(1) C(8) 115.9(6) ... yes N(2) C(2) C(4) 109.4(6) ... yes C(2) N(2) C(6) 109.9(6) ... yes C(4) C(2) C(6) 113.1(6) ... yes 0(5)C(4) 0(6) 122.2(8) ... yes 0(5)C(4) C(2) 125.4(7) ... yes 0(6) C(4) C(2) 112.3(6) ... yes C(5) F(4) F(5) 106.7(6) ... yes F(4) C(5) F(6) 107.1(7) ... yes

F(4)	C(5)	C(8)	111.5((7) yes
F(5)	C(5)	F(6)	108.3((7) yes
F(5)	C(5)	C(8)	110.7((6) yes
F(6)	C(5)	C(8)	112.4((7) yes
C(2)	C(6)	C(7)	114.1	(6) yes
C(6)	C(7)	C(11)	118.9	9(7) yes
C(6)	C(7)	C(12)	121.2	2(7) yes
C(11)	C(7)	C(12)	119.	9(7) yes
N(1)	C(8)	C(1)	109.5	(6) yes
N(1)	C(8)	C(5)	112.2	(6) yes
C(1)	C(8)	C(5)	112.4	(6) yes
0(6)	C(9)	C(10)	108.7	7(7) yes
C(7)	C(11)	C(15)	119.	1(9) yes
C(7)	C(12)	C(13)	121.	3(8) yes
C(12)	C(13)	C(14)	118	8.9(9) yes
C(13)	C(14)	C(15)	120).6(8) yes
C(11)	C(15)	C(14)	120	0.2(10) yes
#				
loop_				
_geom_t	torsion_a	atom_sit	e_label	I_1
_geom_1	torsion_a	atom_sit	e_label	I_2
_geom_1	torsion_a	atom_sit	e_label	I_3
_geom_1	torsion_a	atom_sit	e_label	I_4
_geom_1	torsion			1
_geom_1	torsion_s	site_sym	imetry_	_1
_geom_1	torsion_s	site_sym	imetry_	_2
				527
_geom_t	torsion_s	site_sym	imetry_	_3
_geom_t	torsion_s	site_sym	imetry_	_4
_geom_1	corsion_p	טגוד_ומטכ א (ג) כ	J	
F(4)		L(8) I L(8) (N(1)	67.0(8) yes
F(4)		-(0) (-(0) N	$\mathcal{L}(1)$	-56.6(9) yes
$\Gamma(5)$		-(0) I -(0) (N(1) C(1)	-51.6(9) yes
F(5)		L(8) (L(8) (J(1)	-175.4(6) yes
F(6)		J(8) ľ	N(1)	-172.7(7) yes
F(6)	C(5) = C(1)	J(8) ($\mathcal{L}(1)$	63.4(9) yes
U(3)	$\mathcal{L}(1)$	N(2)	C(2)	4(1) yes
O(3)	C(1)	L(8)	N(1)	-30.9(9) yes
O(3)	C(1)	C(8)	C(5)	94.4(8) yes
U(5)	C(4)	U(6)	C(9)	-4(1) yes
U(5)	C(4)	C(2)	N(2)	123.6(8) yes

0(5)	C(4)	C(2)	C(6)	-113.6(9) yes
0(6)	C(4)	C(2)	N(2)	-53.7(8) yes
0(6)	C(4)	C(2)	C(6)	69.1(8) yes
N(1)	C(8)	C(1)	N(2)	149.8(7) yes
N(2)	C(1)	C(8)	C(5)	-84.9(8) yes
N(2)	C(2)	C(6)	C(7)	-173.4(6) yes
C(1)	N(2)	C(2)	C(4)	-111.6(7) yes
C(1)	N(2)	C(2)	C(6)	123.7(7) yes
C(2)	N(2)	C(1)	C(8)	-176.8(7) yes
C(2)	C(4)	0(6)	C(9)	173.1(7) yes
C(2)	C(6)	C(7)	C(11)	-111.3(8) yes
C(2)	C(6)	C(7)	C(12)	71.2(9) yes
C(4)	0(6)	C(9)	C(10)	-158.9(7) yes
C(4)	C(2)	C(6)	C(7)	64.0(8) yes
C(6)	C(7)	C(11)	C(15)	-178.9(8) yes
C(6)	C(7)	C(12)	C(13)	177.7(8) yes
C(7)	C(11)	C(15)	C(14)	3(1) yes
C(7)	C(12)	C(13)	C(14)	0(1) yes
C(11)	C(7)	C(12)	C(13)	0(1) yes
C(11)	C(15)	C(14)	C(13)) -3(1) yes
C(12)	C(7)	C(11)	C(15)	-1(1) yes
				S28
C(12)	C(13)	C(14)	C(15)) 2(1) yes
C(12)	C(13)	C(14)	C(15)) 2(1) yes
#				

loop_

```
_geom_contact_atom_site_label_1
_geom_contact_atom_site_label_2
_geom_contact_distance
_geom_contact_site_symmetry_1
_geom_contact_site_symmetry_2
_geom_contact_publ_flag
              3.136(7) . 3_446 ?
Cl(1)
       N(1)
              3.191(7) ...?
Cl(1)
       N(1)
              3.227(7) ...?
Cl(1)
       C(1)
Cl(1)
       0(3)
              3.238(5) .3_446?
              3.240(6) .3_546?
CI(1)
       N(1)
Cl(1)
              3.420(9) ...?
       C(8)
              3.480(5) ...?
Cl(1)
       0(3)
CI(1)
              3.594(7) ...?
       N(2)
              3.011(7) .1_655?
F(4)
       F(5)
```

F(5)	C(9)	3.25(1)	. 4_646 ?
F(5)	0(6)	3.323(8)	. 4_646 ?
F(5)	0(3)	3.513(7)	.1_455 ?
F(5)	C(10)	3.53(1)	.4_646 ?
F(5)	C(11)	3.55(1)	. 4_646 ?
F(6)	0(5)	3.252(9)	.1_455 ?
F(6)	C(15)	3.37(1)	. 4_746 ?
0(3)	N(1)	2.865(9)	. 3_546 ?
0(3)	C(8)	3.103(9)	.1_655 ?
0(3)	N(1)	3.154(9)	.1_655 ?
0(5)	N(2)	2.855(9)	.1_655 ?
0(5)	0(6)	3.252(8)	.1_655 ?
C(6)	C(13)	3.39(1)	.1_455?

loop_

#-

_geom_hbond_atom_site_label_D

S29

_geom_hbond_atom_site_label_H

_geom_hbond_atom_site_label_A

_geom_hbond_site_symmetry_D

_geom_hbond_site_symmetry_H

_geom_hbond_site_symmetry_A

_geom_hbond_site_distance_DH

_geom_hbond_site_distance_HA

_geom_hbond_site_distance_DA

_geom_hbond_angle_DHA

_geom_hbond_publ_flag

```
N(1)
      H(17) F(4)
                     ...0.66(5) 2.73(4) 2.928(8) 100(4) no
                    ... 0.66(5) 2.52(4) 2.706(7) 98(4) no
N(1)
      H(17)
              0(3)
N(2)
      H(15)
              F(6)
                     ... 0.71(5) 2.69(5) 3.055(7) 114(4) no
                    ...0.71(5) 2.64(5) 2.759(8) 92(4) no
N(2)
      H(15)
              0(6)
             3.130(7) ... -0.2830 0.6586 0.7268 92(4) no
F(4)
      0(3)
             2.928(8) ... -0.3075 0.6490 0.5774 92(4) no
F(4)
      N(1)
F(5)
             2.773(8) ... -0.3094 0.6446 0.3054 92(4) no
      N(1)
             3.055(7) ... -0.1870 0.7117 0.5147 92(4) no
F(6)
      N(2)
0(3)
      F(4)
             3.130(7) ... -0.2393 0.6187 0.8028 92(4) no
0(3)
      N(1)
             2.706(7) ... -0.2300 0.5756 0.7034 92(4) no
             2.773(8) ... -0.2966 0.6087 0.3550 92(4) no
N(1)
      F(5)
              Cl(1) ...3_566 0.66(5) 2.48(5) 3.136(6) 169(4) no
N(1)
      H(17)
N(1)
      H(18)
              0(3)
                     ..1_455 0.8(1) 2.6(1) 3.154(7) 123(>>) no
                     ..1_455 0.71(5) 2.17(5) 2.855(8) 162(5) no
N(2)
      H(15)
              0(5)
```

#-----

S30